#### **Experimental Therapeutics I**

Mary Hitt 5142 Katz Group Centre <u>mhitt@ualberta.ca;</u> or <u>Mary.Hitt@albertahealthservices.ca</u>

## **Specific Topics for Today**

- -Preclinical and clinical testing
- -Gene therapy
  - Nonviral vectors
  - Methods of delivery and targeting
  - Genetic information delivered
    - Protein-coding sequences
    - RNA interference
- -Oncolytic viruses

#### References

- Weinberg, chapter 16
- Cancer treatment resource:
  - Canadian Cancer Society: <u>http://www.cancer.ca</u>
  - (U Penn): <u>http://www.oncolink.org/</u>
  - National Cancer Institute (USA); http://www.cancer.gov/cancerinformation
- Canadian cancer clinical trials:
  - Canadian Partnership Against Cancer: <u>http://www.canadiancancertrials.ca/</u>
- Gene therapy:
  - Gene therapy clinical trials database: <u>http://www.abedia.com/wiley/index.html/</u>
- RNA interference:
  - http://www.rnaiweb.com/
  - <u>http://www.protocol-</u> online.org/prot/Molecular\_Biology/RNA/RNA\_Interference\_R NAi\_/
- Oncolytic viruses:
  - Melcher et al., (2011) Mol Ther. 19:1008-16.
  - Parato et al., (2005) Nature Rev. Cancer 5: 965-976

## Testing Experimental Cancer Therapies







Oncology 520 Experimental Therapies I

# **Experimental Therapies: Preclinical Cancer Research**

- *Preclinical* stage: To assess agent in tissue culture and in animal models
- NCI's Developmental Therapeutics Program (DTP):
  - >400,000 drugs in repository
  - ~80,000 compounds screened since 1990

# **DTP Screening Process**

- Preliminary screening:
  - 3 human tumor cell lines, one drug dose, 48 hour treatment
  - If growth inhibited in ≥ one cell line → test in full panel of human tumor lines *in vitro*
- Large scale *in vitro* screen in human tumors:
  - Panel of 60 human tumor cell lines, 5 doses, 48 hours
  - If drug is promising (kills preferentially ≥one tumor cell line, has unique mechanism of action, or works at low concentration) → testing in mice
  - ~ 2,500 compounds/yr tested at NCI
  - ~ 2 percent of those screened are recommended for testing in mice

Drug Discovery at NCI-Fact Sheet

# Issues with Testing in Tissue Culture Models



- Are cell lines representative of human tumors?
  - NCI panel more aggressive than average clinical samples
  - Cell lines less heterogeneous than tumors
  - Tumor environment/stromal cell component missing



# Testing in Animal Models

- Efficacy (how well does it work?): human tumor cell line xenografts in nude (immunocompromised) mice
- Drug properties: stability, uptake, excretion, activity profile
- Toxicity: effects on normal cells and tissues (two species of animals)

#### **Problems with Animal Models**

- Drug activities in mice not always predictive for humans
- Regression of tumors in animal models not always predictive of results with human cancers:
  - Model tumors (human xenografts or mouse tumors) grow much faster than typical human cancers
  - No (or limited) immune component in xenograft models
  - Mouse tumors equivalent to human tumors not always available
  - Tumor environment in models very different from that in patients

#### **Clinical Cancer Research**

- Clinical testing for Investigational New Drugs (IND): To assess agent in patients
  - Phase I, II, III for experimental agents
  - IV for approved treatments
- Currently, 659 cancer trials recruiting patients in Canada (119 current trials at the Cross Cancer Institute)

# **Clinical Testing**

- Phase I: <u>Safety and toxicity</u>
  - Small numbers of patients (~30)
  - Measures side effects
  - Starts at low doses, increases
    incrementally up to the maximum tolerable
    <u>dose</u>
  - May measure some readout of anti-cancer activity, but not statistically significant

# **Phase II/III Clinical Testing**

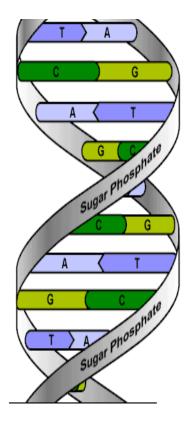
#### • Phase II: <u>Efficacy</u> (how well does it work?)

- Agents that pass phase I
- Larger numbers of patients (~50-100)
- Indications (type of tumor, stage of progression, etc) considered
- Efficacy and side effects measured

#### Phase III: <u>Comparison with current standard of care</u>

- Larger groups of patients (100s to 1000s)
- Patients usually randomized
- Efficacy and side effects measured
- Statistical significance




## Approval

- After successful phase III trials
- Health Canada (Food and Drug Administration in US) approval for a specific indication
- ~15 years (~\$1 billion) from preclinical to approval: new fast-tracking can speed this up

#### Novel/Experimental Cancer Therapies

- Targeted low molecular weight drugs
- Biological agents:
  - Monoclonal antibodies targeting
    - antigens on surface of tumor cells (e.g. HER2): goal is immune clearance of tumor cells
    - secreted proteins (e.g., VEGF): goal is inactivation
  - Proteins for
    - immunotherapies (cytokines): to induce an anti-tumor immune response
    - anti-angiogenic therapies (endostatin): to block nutrient and oxygen supply to tumor
  - Gene therapy
  - Virotherapy

#### **Gene Therapy**



#### What is Gene Therapy?

 Transfer of genetic information to recipient (cell/tissue/organism) in order to treat a disease or its symptoms

#### When is Gene Therapy Applicable?

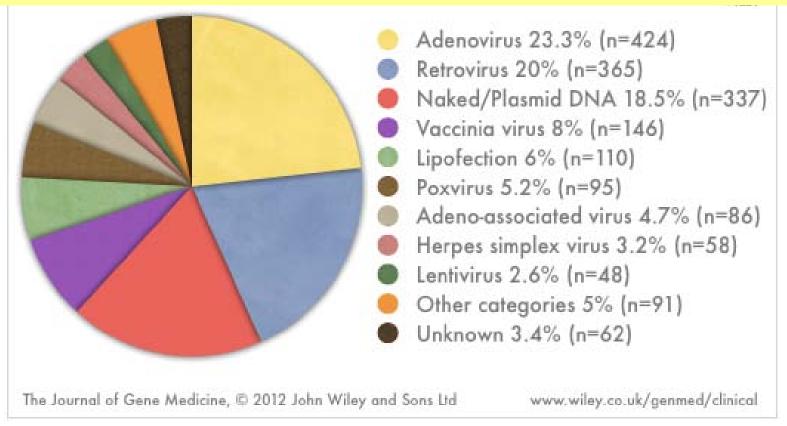
- When the therapeutic gene encodes an intracellular or transmembrane protein
- For local protein or RNA delivery
- (Cancer vaccines to deliver antigens)
- No shortage of potential gene targets in cancer
- Challenge is delivery

## Gene Therapy Clinical Trials by Disease & by Phase

WILEY

Cancer diseases 64.6% (n=1107) Cardiovascular diseases 8.5% (n=146) Monogenic diseases 8.3% (n=143) Infectious diseases 8.1% (n=138) Neurological diseases 2% (n=35) Ocular diseases 1.3% (n=23) Inflammatory diseases 0.8% (n=13) Other diseases 1.1% (n=19) Gene marking 2.9% (n=50) Healthy volunteers 2.3% (n=40)

The Journal of Gene Medicine, © 2011 John Wiley and Sons Ltd


www.wiley.co.uk/genmed/clinical

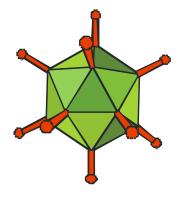
Phase I: 60%; Phase I/II: 19% Phase II: 16%; Phase III: 3.4%

#### Components of Gene Therapy Vectors

- Delivery vehicle (*e.g.*, virus, liposome)
- Regulatory elements controlling the transgene (*e.g.*, tissue-specific promoter/enhancer)
- Transgene (*e.g*., p53)

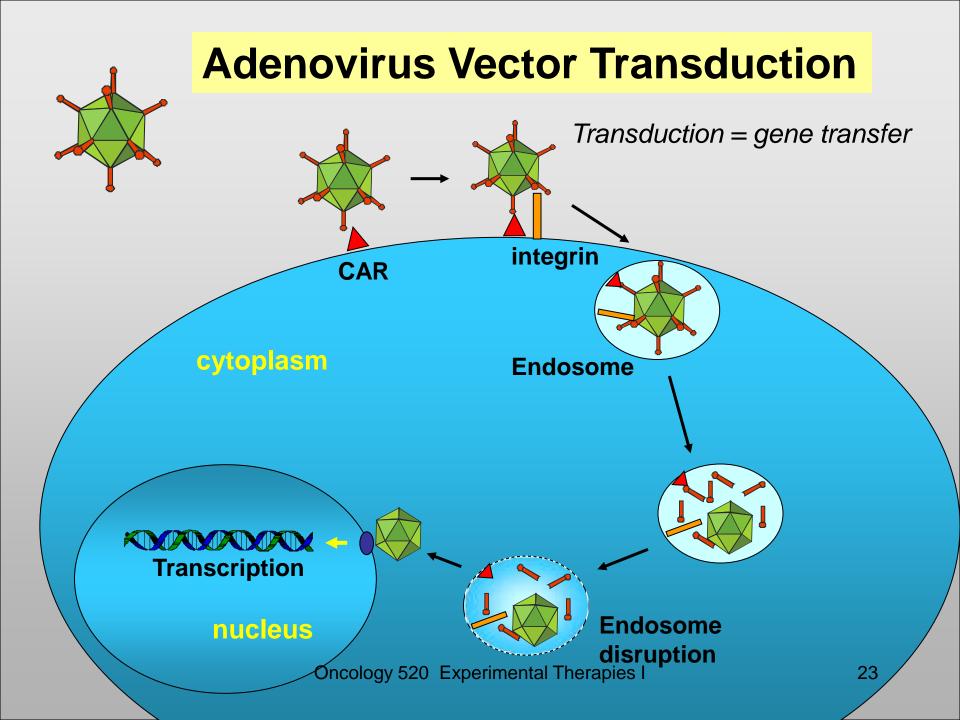
#### Vectors Used in Gene Therapy Clinical Trials




## Viral vs. Non-viral Vectors

#### **Viral vectors**

- Selected by nature for highly efficient gene transfer
- Replication-defective or replication-competent

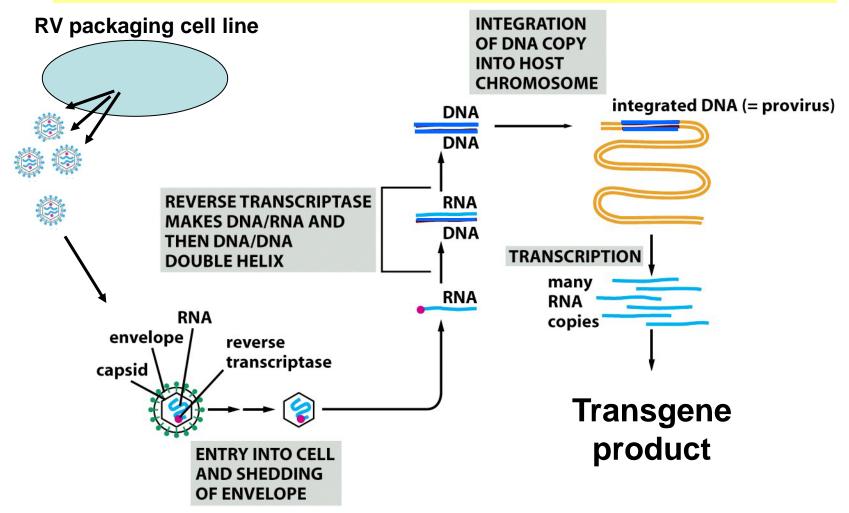

#### Nonviral vectors

- Higher degree of safety (no revertants or recombinants)
- Usually cheaper to make
- Fewer limitations on size of gene transferred



### Adenovirus Properties

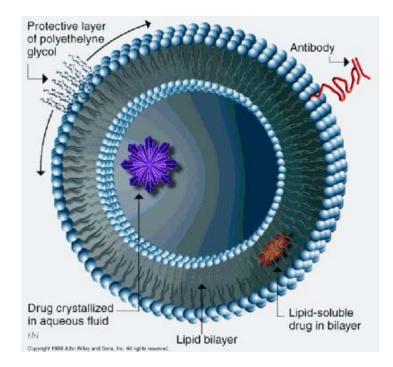
- Medium size (36 kilobase) double-stranded DNA virus
- Infects a wide variety of cell types from many different species
- Infects both proliferating and quiescent cells
- Can evoke a strong immune response
- Viral genome does not integrate into host genome
  - no insertional mutagenesis
  - Transient expression




# Retroviral Vector Properties



- RNA virus, ~8 kb genome
- Engineered to infect a variety of cell types from different species
- Viral genome integrates into host genome
  - usually only in proliferating cells (lentivirus is exception)
  - long term expression is possible
  - potential for insertional mutagenesis
- No immunity induced against transduced cells

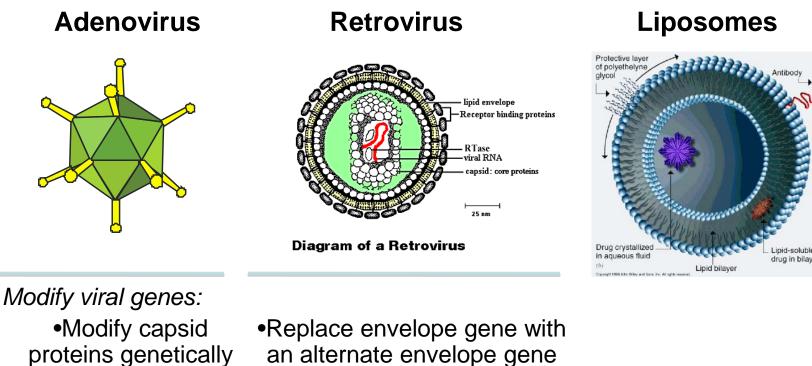

#### **Retroviral Vector Transduction**





# **Nonviral Delivery Systems**

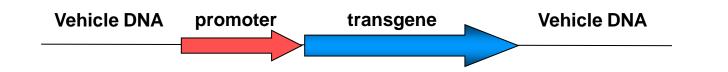
- Nanoparticles:
  - Liposomes: lipid spheres that can harbor DNA, RNA or other molecules
  - Nucleic acids can be encapsulated in nonlipid coats (amino acid polymers)
- Naked DNA transfer
  - In vivo or ex vivo




#### Liposome structure

# **Vector Targeting**

- To improve therapeutic index (minimize damage to normal tissues)
- <u>Transductional targeting</u>: modification of delivery vehicle so that vector enters only certain cells
- <u>Transcriptional targeting</u>: modification of regulatory DNA or RNA sequences in vector so that gene is activated only in certain cells


#### **Transductional Targeting**



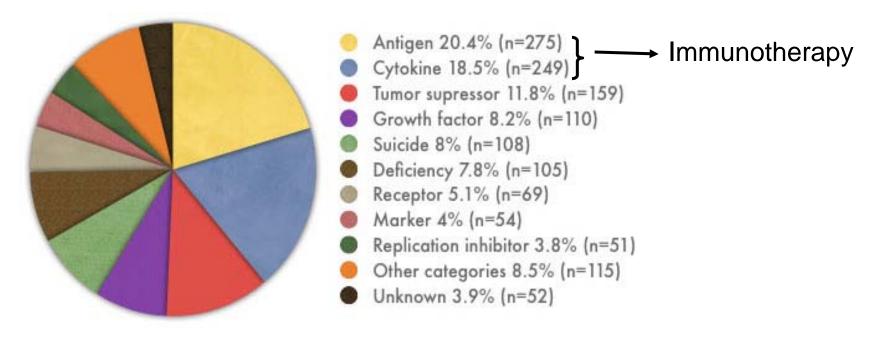
an alternate envelope gene during vector production

Or make non-genetic modifications:

•Chemically attach (or embed) antibodies, ligands or other targeting molecules to surface of vehicle



#### **Transcriptional Targeting to Tumors**


*Transcriptional targeting*: mRNA only produced in specific targeted cells

Transgene transcription made specific by :

- Promoters of genes expressed in tissues from which the cancer originates (e.g., prostate-specific antigen)
- Promoters of genes expressed in metastatic cancers (osteocalcin: expressed in bone mets of prostate cancer)
- Promoters of genes expressed by tumor cells specifically (telomerase)
- Promoters of genes induced by conditions at the tumor site (e.g., hypoxia-inducible genes)

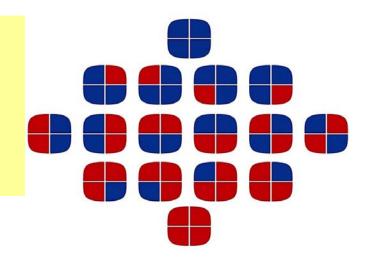
*Promoters* = regulatory DNA sequences that control gene 29 expression

#### Types of Genes Transferred in Clinical Trials



The Journal of Gene Medicine, © 2008 John Wiley and Sons Ltd

www.wiley.co.uk/genmed/clinical


Oncology 520 Experimental Therapies I

#### Strategies for Cancer Gene Therapy

Strategies that target specific processes involved in tumor development:

- Expression of tumor suppressor genes or other genes that prevent tumor growth or progression
- Inhibition of oncogenes or other genes that promote tumor growth or progression
- Hundreds of candidates genes

# Replacement of p53



- Tumor suppressor
- Induces cell cycle arrest and apoptosis
- Most commonly mutated gene yet identified in human cancers
- Over-expression of p53 induces cell cycle arrest (but not apoptosis) in normal cells
- Potentially good candidate for gene therapy

# p53 Gene Therapy

- Phase III trial for head and neck cancer end stage patients: survival increased with superior safety for Adp53 compared to methotrexate
- Clinical trial with Adp53 plus radiation or chemotherapy for non-small cell lung carcinoma (NSCLC):
  - clinical response in <u>></u> half of patients (biopsies 3 months post-treatment show no evidence of tumor in 70% of patients)
  - evidence of apoptosis induction at the tumor site
- Not yet approved by US FDA

#### Adp53 Gene Therapy Approval in China (2003)

China has approved Gendicine (Adp53) for commercialization (the first gene therapy vector approved) based on primary response rates in NSCLC



#### Adp53 Clinical Trial for Ovarian Cancer

- Phase III trial of Adenovirus-p53 plus chemotherapy in ovarian cancer patients
- > No therapeutic benefit

Possible reasons for failure:

- Impairment of molecules "downstream" of p53 (77% of ovarian cancers are impaired in activation of caspase-9 and caspase-3)
- Some p53 mutations are dominant-negative
- Pre-existing immunity to Ad
- Low/variable level of Ad receptor on primary tumor

#### Strategies for Cancer Gene Therapy (II)

# Strategies that target specific processes involved in tumor development:

- Replacement of tumor suppressor genes or other genes that prevent tumor growth or progression
- Inhibition of oncogenes or other genes that promote tumor growth or progression
- > Hundreds of candidates genes

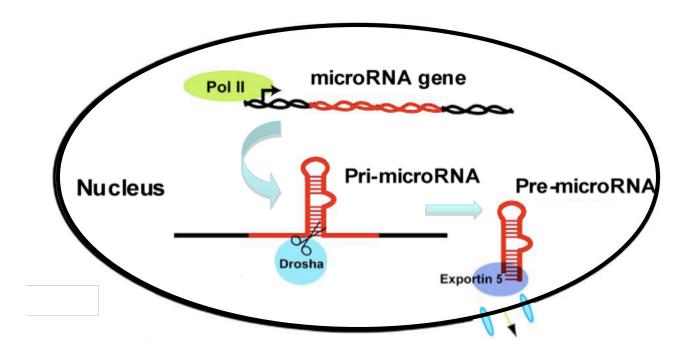
### Inhibition of Genes that Promote Tumor Growth or Progression

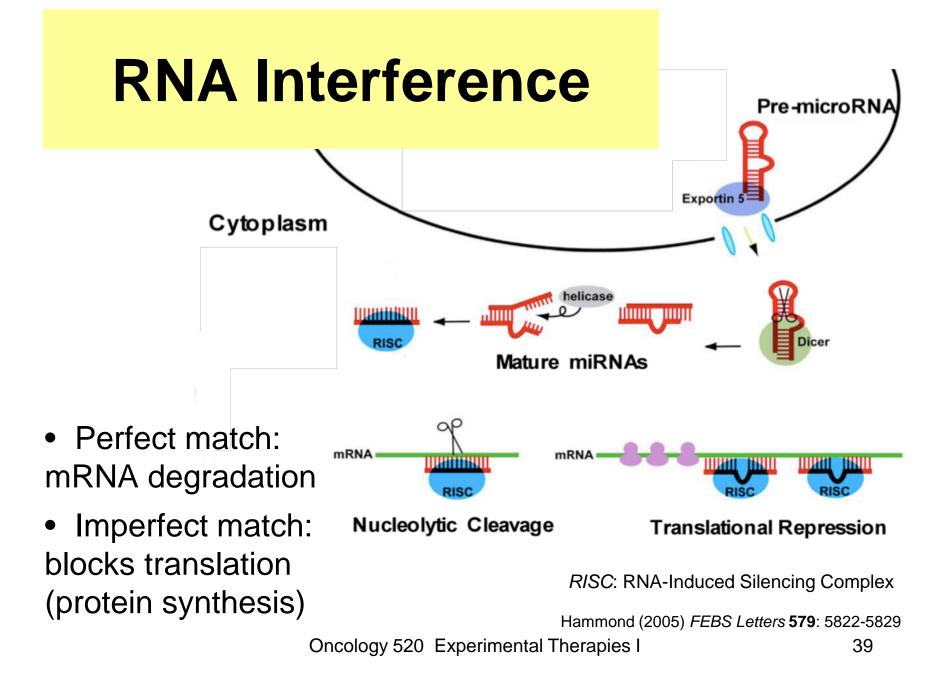


"for their discovery of RNA interference - gene silencing by double-stranded RNA"






#### **RNA interference:**


- naturally occurring process
- sequence-specific inhibition of gene expression
- mediated by small doublestranded RNAs

#### **RNA Interference in Mammals**

Role of RNAi: to regulate gene expression

**MicroRNA Processing:** 





## Experimental "Knockdown" of Gene Expression

 Synthetic doublestranded short interfering RNA (siRNA)

 Engineered miRNA genes
 produce short
 hairpin RNA
 (shRNA)



### Inducing RNA Interference as a Cancer Therapy

- To reduce expression of genes involved in cancer progression
- Advantage of si/shRNA as a therapeutic: high specificity based on gene sequence
- Challenges similar to other gene therapy approaches: delivery, stability, safety
- Additional challenge: incomplete knockdown

# **Targets of si/shRNAs**

- Expression of a variety of targets has been inhibited by engineered si/shRNAs in experimental cancer studies
  - Anti-apoptotic proteins
  - Signaling molecules
  - Telomerase
  - HPV E6 & E7
  - MDR-1
  - Many, many more

# **Oncolytic Viruses**

**Oncolytic virus:** Virus that undergoes a productive lytic infection in tumor cells (infects, replicates and packages the viral genome, then lyses host cell)

#### <u>History</u>

- 1956 (NCI) studies: cancer patients treated, with wild-type lytic viruses
- 20/30 cervical carcinoma patients treated with Ad had clinical response (low)
- Abandoned due to potential safety issues and chemotherapy alternatives
- Revisited after technology available to make viruses more tumor-selective and more robust

## Ideal Properties of Virus for Development as Oncolytic Agent

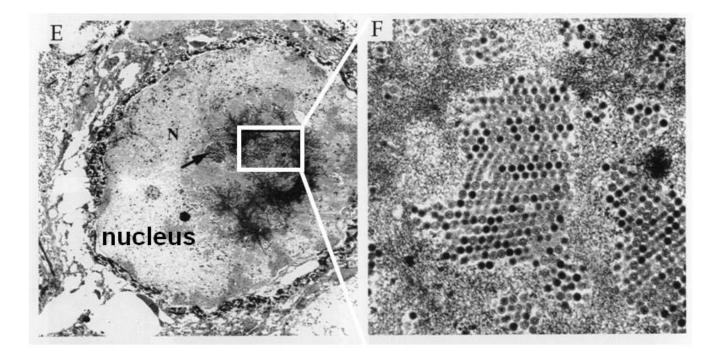
- Tumor-selective
- Safe (therapeutic virus and possible revertants)
- Replicates rapidly
- Spreads to adjacent cells (overcomes delivery problems)
- Spreads throughout the host (reaches metastatic sites)
- Evades the host immune response
- Can be manipulated genetically (to enhance above properties, or to "arm" the virus)

#### Mechanisms for Tumor-Selective Replication of Oncolytic Viruses

- Selective cell entry (natural or engineered)
- Selective expression of viral genes necessary for replication (transcriptional regulation by tissue-specific promoters)
- Selective replication dependent on pathways that are dysregulated in tumor cells

#### Pathways that Could Limit Virus Replication in Normal Cells

- Cell cycle control (many viruses require host cell replication machinery)
- Control of signaling pathways (e.g., ras, Akt activation leads to replication of some viruses)
- P53, pRb and apoptosis induction
- Interferon response induction
- Viruses that dysregulate these pathways can replicate in normal cells


### Oncolytic Virus Replication in Cancer Cells

- Cancer cells carry mutations in these control pathways (p53, pRb, etc.)
- Viral genes involved in dysregulation of p53, pRb, etc, are redundant in cancer cells
- Deletion of these viral genes should have no effect on virus replication in tumor cells, but virus replication is blocked in normal cells

#### Examples of Oncolytic Viruses in Clinical Trials

- Adenoviruses (ONYX-015: viral E1B gene deletion; other Ads: prostate-specific promoters controlling E1A and/or E1B)
- Reovirus (requires activated ras)
- Newcastle Disease Virus (requires interferondefective cells)
- Vaccinia (multiple deletions)
- Herpes simplex virus (Phase III trial for glioblastoma)
- Measles virus (CD46 receptor over-expressed on tumor cells)
- Vesicular stomatitis virus (VSV) (interferondefective cells)

#### ONYX-015 (Ad) Replicates in Human Tumors



From D. Kirn (1999), in "Gene Therapy of Cancer" (E. Lattime and S. Gerson, eds.) Academic Press, San Diego, CA, USA, pp. 235-250.

Oncology 520 Experimental Therapies I

## **ONYX-015 (Ad) Clinical Results**

- Well tolerated
- Anti-viral antibodies did **NOT** block anticancer activity after intra-tumoral injection
- Potential synergism with chemotherapy
- H101, similar to ONYX-015 approved for head and neck cancer in China in Nov 2005

### Current Status of Oncolytic Viruses

- Oncolytic viruses: tumor-selective (tumor cell or tumor vasculature), safe, replicate rapidly and spread to adjacent cells
- Oncolytic viruses elicit anti-tumor immune response, particularly when "armed" with immunomodulatory genes
- Balance between anti-viral response (limiting virus spread) and anti-tumor response is important

### Summary

- Novel cancer treatments include immunotherapies, anti-angiogenic therapies, small molecular weight drugs, gene therapies and viruses
- Novel cancer agents undergo preclinical and clinical testing
- Each type of gene therapy vector has its own advantages and disadvantages
- Gene therapy agents act by
  - inducing anti-tumor immunity
  - activating tumor suppressor pathways (e.g., p53) or other cytotoxic pathways
  - inhibiting tumorigenic pathways (using RNA interference)
- Oncolytic viruses, either naturally or through genetic engineering, should preferentially replicate in and kill tumor cells: safety and efficacy in patients under evaluation